
Higher-dimensional extensions of Pauli spin matrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 1667

(http://iopscience.iop.org/0305-4470/12/10/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 10, 1979. Printed in Great Britain 
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Received 27 November 1978 

Abstract. The principle of basis set representation in terms of coordinate interchange 
matrices, of which the Pauli spin matrices are an example in two dimensions, are extended to 
three and four dimensions. The four-dimensional basis set of coordinate interchange 
matrices satisfies the usual conditions of completeness, but the three-dimensional basis set 
cannot be complete under any circumstances and an ‘anticomplete’ property is assigned to 
it. The coefficients of the basis set, when used to represent an arbitrary matrix, form a 
Hadamard transform of the cyclically interchanged arbitrary matrix. 

1. Introduction 

The usefulness of Pauli spin matrices need hardly be emphasised. Besides being of 
fundamental importance in quantum mechanics their use has been extended to optical 
problems as well (Jones 1948, O’Neil 1963, Whitney 1971). However, Pauli spin 
matrices are fundamentally two-dimensional operators. Certainly their use in three- 
dimensional problems has not occurred as a mathematical event and their use in four 
dimensions is uncommon. There has, however, been some anticipation of the four- 
dimensional case (Wiener 1928) and its use in optical problems has been suggested 
(Weeks 1934, Stephany 1975). The difficulty with the three-dimensional represen- 
tation is that, as will be shown, it is impossible to represent an arbitrary matrix in terms 
of a complete set of nine coordinate interchange matrices. A coordinate interchange 
matrix is one in which all elements of any column or row are zero except for one element 
which is either plus or minus one, which is a special case of a coherency matrix. It is 
possible, however, to select a set of three-dimensional coordinate interchange matrices 
that are linearly independent and can therefore represent an arbitrary matrix. It is not 
necessary that the set be complete with respect to multiplication since it is then possible 
to represent the product of any two matrices within the set in terms of a linear 
combination of matrices within the set. Thus the property of linear independence is 
more important in a representation set of matrices than the property of completeness. It 
follows that if symmetrical linear independence of the product is invoked, that is, the 
matrix of coefficients of expansion of all the products of the basis set has the same 
number and preferably the same form, then it is impossible for the basis set to contain 
the unit matrix, and it is also impossible for the basis set to contain any simple matrix 
product of two arbitrary matrices within the set. Such a property will be defined as 
‘anticomplete’. 

The representation of an arbitrary three-dimensional matrix in this form is 
apparently new, owing to the lack of recognition of the importance of basis sets that do 
not satisfy the definition of completeness. The completeness property of the set is 
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fundamentally a property of convenience to the mathematician; that is, it is easier to 
handle a set of matrices in which the product of any two lies within the set rather than a 
set in which the product is a linear combination of elements of the set. If the 
mathematician should choose a modern digital computer to do his support work, then 
the completeness property makes little sense at all, since the computer can derive the 
linear combination of the set of matrices necessary to represent a product once, and 
then use ‘look-up table’ techniques to apply them to a given problem. Their use cannot 
be considered to be limited to computer problems, however. Just as Pauli spin matrices 
bring valuable insight into certain problems of physics, the anticomplete sets can bring 
similar insight. 

In  the following, basis set representation is made in three and four dimensions as 
more of an illustration of technique than as an application. Extensions to higher 
dimensions may then take the form of the principles utilised for the lower-dimensional 
cases. It should also be noted that, in order to illustrate fully the basis set representation 
of the Pauli spin matrix, the imaginary factor was dropped. This is not considered 
fundamental in any sense and, as should be obvious, the three- and four-dimensional 
representations can be made similarly complex. However, this author believes that the 
inclusion of an imaginary factor only clouds the issue. 

2. Pauli spin matrices as two-dimensional coordinate interchange matrices 

The Pauli spin matrices together with the two-dimensional unit matrix are usually 
written as 

l=( i  ;), ax=(1  0 1  o)’ ay=(; -i), a.=(’ 0 -1 O). (1) 

By extracting a factor of -i, it is possible to rewrite this set in terms of a new notation: 

1 0  0 1  
I I l l= (o  1) 1112=( o) 

0 1  
I121 =(’ 0 -1 ”> 1 1 2 2 = ( ~ 1  o) 

in which any arbitrary matrix (a) can be represented as a linear combination of elements 
of equation (2) as 

2 

(a) = aij11jj 
i. j=l 

( 3 )  

where the aij are the coefficients of the expansion. This last expression may in turn be 
written in matrix form as 

Note that, despite its almost trivial simplicity, an arbitrary matrix is the Hadamard 
transform of the matrix of coefficients. Note also that the arbitrary matrix is cyclically 
interchanged in the second line. The significance of these two observations may 
become clearer later. The inverse of equation (4) above is immediately written, since 
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the Hadamard matrix is its own inverse: 

( 5 )  

The set of equation (2) above is complete in the normal sense of matrix multiplication 
and the product table is given below. 

Table 1. Product of 11, and IIkI. yl* 12 21 22 
i j  

11 11 12 21 22 
12 12 11 -22 -21 
21 21 22 11 12 
22 22 -22 -12 -11 

By formulating the Pauli spin matrices combined with the unit matrix in just this form, it 
is possible to expand these results to higher dimensions. 

3. The four-dimensional coordinate interchange basis set 

The three-dimensional expansion of the above will be set aside temporarily and the 
four-dimensional coordinate interchange basis set will now be considered. The reason 
for this is ultimately the difficulty of writing the Hadamard transform in three dimen- 
sions. The four-dimensional coordinate interchange matrices are 

1 0 0 0  0 1 0 0  
Ivll=[: 1 0  ;I, 1v12=(; : ; ;I, 

0 0 0  0 0  0 
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Any arbitrary matrix aii can be represented in terms of this set by 

where the aii are the coefficients of the expansion which may be found from 

all a12 a 1 3  a 1 4  1 1 all a12 a 1 3  a 1 4  

(8 
a 2 2  a 2 1  a 2 4  a 2 3  

a 3 3  a34 a 3 1  a 3 2  

a 4 2  a 4 3  a 4 4 ,  a 4 4  a43 a 4 2  a 4 1 ,  

The unique properties of this set in representing polarised light have already been 
published (Stephany 1975) and the interesting features of the operators will not be 
further discussed here. The product table of these matrices are given in table 2. The 
products are always within the set and the set is complete with respect to matrix 
multiplication. 

4. The three-dimensional coordinate interchange basis set 

There is no set of nine coordinate interchange matrices that satisfies the properties 
illustrated by the four-dimensional basis set. Specifically, it is impossible to write a 
complete set of nine 3 x 3 coordinate interchange matrices that possess the property of 
completeness. It is possible to write a set of twelve 3 x 3 coordinate interchange 
matrices that are complete, but in representing an arbitrary matrix there are twelve 
coefficients in the expansion while only nine are needed. Equating three of the 
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Table 2. Product of IV,iIVk,, 

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 

11 11 12 13 14 21 22 23 24 

13 13 14 11 12 23 24 21 22 
12 12 11 14 13 -22 -21 -24 -23 

14 14 13 12 11 -24 -23 -22 -21 

21 21 22 23 24 11 12 13 14 

23 23 24 21 22 13 14 11 12 
22 22 21 24 23 -12 -11 -14 -13 

24 24 23 22 21 -14 -13 -12 -11 

31 31 32 33 34 41 42 43 44 

33 33 34 31 32 43 44 41 42 
32 32 31 34 33 -42 -41 -44 -43 

34 34 33 32 31 -44 -43 -42 -41 

41 41 42 43 44 31 32 33 34 

43 43 44 41 42 33 34 31 32 
42 42 41 44 43 -32 -31 -34 -33 

44 44 43 42 41 -34 -33 -32 -31 

31 32 33 34 
32 31 34 33 

-33 -34 -31 -32 
-34 -33 -32 -31 

41 42 43 44 
42 41 44 43 

-43 -44 -41 -42 
-44 -43 -42 -41 

11 12 13 14 
12 11 14 13 

-13 -14 -11 -12 
-14 -13 -12 -11 

21 22 23 24 
22 21 24 23 

-23 -24 -21 -22 
-24 -23 -22 -21 

41 42 43 44 
-42 -41 -44 -43 
-43 -44 -41 -42 

44 43 42 41 

31 32 33 34 
-32 -31 -34 -33 
-33 -34 -31 -32 

34 33 32 31 

21 22 23 24 
-22 -21 -24 -23 
-23 -24 -21 -22 

24 23 22 21 

11 12 13 14 
-12 -11 -14 -13 
-13 -14 -11 -12 

14 13 12 11 

coefficients to zero accomplishes the task of the representation but is physically and 
aesthetically weak in that the result lacks the natural symmetry that was present in the 
above two- and four-dimensional representations. 

The one factor that makes such a representation possible in three dimensions with 
nine matrices in the basis set as mentioned in the Introduction is that the product of any 
two matrices within the basis set can be made to be a linear combination of matrices 
within the basis set. This property is derived from the independence of the basis set. But 
to preserve the symmetrical properties it is essential that the linear combination of basis 
matrices used to represent the product be the same in number for the product of any two 
matrices within the basis set. It is this property that results in the antiset properties. 

First of all, it is apparent that the desired set of nine 3 x 3 basis matrices of the 
coordinate interchange type cannot be complete, nor can any subset be complete. Then 
the product of two arbitrarily selected matrices must be composed of at least two or 
more other matrices within the set. To preserve the symmetry of the set, all products 
must be composed of the same number of linear combinations of matrices within the set. 
Since the unit matrixdoes not satisfy this property it cannot be within the set. Similarly, 
any of the following matrices cannot be within the set 

which is the set of twelve complete 3 x 3 matrices. This reasoning leads to the following 
set of basis matrices which is the only possible such set in three dimensions, barring sign 
variations, with the properties of basis set representation of the kind being sought. They 



J F Stephany 1672 

are 

11111 = 

0 0 -1 

1 0 0  
0 1 01 11112 = 

0 0 1  
IIIzl= 1; -; III22= 

0 0 1  0 1 0  1 0 0  
1113,;(; i 11132=[i 0 01 11133=/0 0 -1 0 ,!.I 
As above, any arbitrary (a) can be represented in terms of this basis set by 

0 -1 

3 

(a)= C a i i ~ ~ ~ i j  
i , j = l  

in which the pseudo-Hadamard matrix is not its own inverse. The inverse relationship is 

Using this last relationship to express the product of any two matrices arbitrarily 
selected from the basis set gives the results of table 3. Here, the value of the a matrix is 
given for the special case 

(a) = IIIijIIIkl. (14) 

It is noted that in this table of matrices each one consists of six components only, 
therefore satisfying the symmetry requirement making all the matrices of the basis set of 
equal preference. Had a basis set of nine matrices been constructed from the set given 
in equation (9) above, the result would be an a matrix of the product of value of either 
one or three nonzero elements, resulting in a serious asymmetrical property within the 
set. The basis set of equation (lo), therefore, satisfies the property of being a 
three-dimensional equivalent of the Pauli spin matrices. 

5. Extensions to higher dimensions 

Representation of arbitrary matrices in higher dimensions is facilitated by the following 
observations. First of all, let (Alii) be a set of N x N coordinate interchange matrices in 
dimension N. Consistent with the preceding notation let (aii) be the set of N2 
coefficients and (ai j )  an arbitrary matrix. Here N may be equal to 2', for c integral, in 
which case (Nii)  is an ordinary complete set of basis matrices. Otherwise Wii) is 
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anticomplete in the sense of the above. The relationships 

a = Hw and cy = (l/M)HL1a (1.5) 

are obvious, where HN is the Hadamard matrix for 2‘, c still being integral, and 
&,HN # 1 for c not integral. A4 is a unique normalisation factor. To facilitate finding 
the representations written in equation (15) above, a and cy may be rewritten in vector 
form as a and a. In general, 

a =(ff11412.. alM21. .  . U Z N . .  . a”) \ 16) 

with a similar relationship a. It is now possible to write the transforms of equation (15) 
as 

U = H N ~ ( Y  (17a )  

and 

a = (1/M2)Hk$a. (176) 

The second relationship will always exist for some basis set, provided HN2 is not 
singular. It will not be singular if the basis set is linearly independent. The general form 
for HN2 is 

The inverse may be found immediately from the relationship 

H L ~ H ~ ~  = 1.  119) 

The only pr&lem remaining is the reduction back to the Nth  dimension from the 
N2th dimension. This reduction can be accomplished by interchanging vertical 
columns of the matrix until the submatrix of any N x N dimensional matrix has all 
off-diagonal elements equal to zero. This procedure explains the interchanging of the 
(aii) elements in equations (4), ( 5 ) ,  (S), (12) and (13). It is also clear that this 
interchanging can always be accomplished because of the nature of the coordinate 
interchange definition. Furthermore, each N x N submatrix is diagonal and will have 
all elements on the diagonal equal. If the elements of this so interchanged matrix are 
designated hii, then 

where the bar under the H indicates that the matrix has been so cyclically interchanged 
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and lN is the N-dimensional unit vector. It is now possible to write the expression for 
H;’: 

.. 

This solves the case in general and enables the writing of transforms for any indepen- 
dent set of coordinate interchange basis matrices in any number of dimensions. 

6. Conclusions 

A set of nine 3 x 3 matrices has been found having a similar function to the Pauli spin 
matrices in representing matrix operators. A like set, which has already been used in 
optics, has also been presented. Extensions to higher dimensions and to a complex form 
is an easy task using the unique properties of the antiset. Although originally designed 
for the task of simplifying computer programming, use of the higher-order Pauli spin 
matrices also lends insight to the expression in compact form of various matrix 
operators. An illustration of this procedure has already been published (Stephany 
1975), and applications to problems other than optical are expected. 
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